Review:
Mycoendophytes in medicinal plants: Diversity and bioactivities

MAHENDRA RAI1*, ANIKET GADE1, DNYANESHWAR RATHOD1, MUDASIR DAR1, AJIT VARMA2
1Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati-444602, Maharashtra India. Tel: +91-721-2662206 to 8, Fax: +91-721-2662135, 2660949, *email: mkrai123@rediffmail.com
2Amity Institute of Microbial Technology, Amity University, Sector 125, Noida, Uttar Pradesh, India

Abstract. Rai M, Gade A, Rathod D, Dar M, Varma A. 2012. Review: Mycoendophytes in medicinal plants: Diversity and bioactivities. Nusantara Bioscience 4: 86-96. Endophytes are microorganisms that reside in internal tissues of living plants without causing any negative effect. These offer tremendous potential for the exploitation of novel and eco-friendly secondary metabolites used in medicine, the pharmaceutical industry and agriculture. The present review is focused on diversity of endophytes, current national and international bioactive secondary metabolite scenario and future prospects. Endophytic fungi as novel source of potentially useful medicinal compounds are discussed along with the need to search for new and more effective agents from endophytes to combat disease problems

Key words: fungal diversity, mycoendophyte, medicinal plants, secondary metabolites.

INTRODUCTION

Endophytes are microbes (fungi or bacteria) that live within the plant tissues without causing any noticeable symptoms of disease (Tejesvi et al. 2007). We propose a new term “Mycoendophytes” for fungi living as endophytes in plants. According to Rodriguez et al. (2009) endophytes are classified into four classes. Class 1 endophytes are clavicipitaceous while class 2-4 are non-clavicipitaceous. Class 1 endophytes of grasses were first reported by European investigators in the late 19th century in seeds of Lolium temulentum, L. arvense, L. linicolum and L. remotum. From their first finding, investigators hypothesized that an association to toxic syndromes experienced by animals that consume infected tissues. However, these hypotheses were largely untested until Bacon et al. (1977) linked the endophyte Neotyphodium coenophialum to the widespread occurrence of ‘summer syndrome’ toxicosis in cattle grazing tall fescue (Festuca arundinaceae) pastures. Class 2-4 which includes non-clavicipitaceous endophytes, showed the ability to colonize asymptptomatically and confer habitat-adapting fitness benefits on genetically distant host species that may include both monocots and dicots. Most of these fungal endophytes belongs to Ascomycota, with a marginal of Basidiomycota. Class 2 endophytes within the Basidiomycota are members of the Agaricomycotina and Pucciniomycotina. Class 2 endophytes are dissimilar from the previous non-clavicipitaceous (NC) endophytes; because in general they colonize roots, stems and leaves and are capable of forming extensive infections within plants. Class 2 endophytes are transmitted via seed coats and or rhizomes; having low abundance in the rhizosphere Class 2 endophytes have confer habitat-adapted fitness benefits in addition to nonhabitat-adapted benefits; and typically have high infection frequencies (90-100%) in plants growing in high-stress habitats (Rodriguez et al. 2009). Class 3 endophytes comprise the hyper diverse endophytic fungi associated with leaves of tropical trees, moreover the highly diverse associates of above-ground tissues of nonvascular plants, seedless vascular plants, conifers and woody and herbaceous angiosperms in biomes ranging from tropical forests to boreal and Arctic/Antarctic communities (Rodriguez et al. 2009). Class 4 endophytes are mainly ascomycetous fungi that are conidial or sterile and that form melanized structures such as inter- and intracellular hyphae and microsclerotia in the roots (Rodriguez et al. 2009).
Mycoendophytes have been found in healthy tissues of all the plant taxa studied to date. Endophytes invade the tissues of living plants and reside in the tissues between living plant cells (Vanessa and Christopher 2004). Some form a mutually beneficial relationship (symbiosis) with the host plants while others are opportunistic pathogens. Petrini et al. (1992) reported that there may be more than one type of mycoendophytes found within a single plant. For example, thirteen taxa of mycoendophyte were isolated from the leaf, stem and root tissues of *Catharanthus roseus* (Kharwar et al. 2008).

Herre et al. (2007) demonstrated that mycoendophyte plays potentially important mutualistic role by augmenting host defense response against pathogens. Endophytes may contribute to host protection by increasing the expression of intrinsic host defense mechanisms and or providing additional sources of defense extrinsic to those of the host. There has been immense interest in the prospecting for these microbial endophytes as source of novel bioactive natural products. Endophytes do show much chemical diversity: alkaloids, peptides, steroids, terpenoids, isocoumarins, quinones, phenylpropanoids, lignans, phenols, phenolic acids, aliphatic compounds, lactones, and others. After the discovery of taxol produced by *Taxomyces andreanae* from *Taxus brevifolia*, interest in endophyte research has increased at a fast pace. *T. brevifolia* is a member of family Taxaceae and native to the north-western United States. The natural product of *T. brevifolia* taxol has been used in the treatment of cancer treatments. Isolation of taxol from *Pestalotiopsis microspora*, an endophyte of *Taxus wallichiana* and phytohormone gibberellin from *Gibberella fujikuroi* in rice plants underlines the potential of endophytes as a source of useful metabolites (Gehlot et al. 2008). The screening of microbial culture filtrates for the presence of secondary metabolites is an established method for the identification of biologically active molecules (Hamayun et al. 2009).

DIVERSITY OF MYCOENDOPHYTES

Mycoendophytes are the most frequent endophytes isolated from medicinal plants. Dreyfuss and Chapela (1994) estimated that there may be at least 1 million species of mycoendophytes. Shipunov et al. (2008) tested the co-introduction and host-jumping hypotheses in plant communities by comparing endophytes isolated from the invasive spotted knapweed (*Centaurea stoebe*, Asteraceae) in its native and invaded ranges. Shipunov and his group (2008) indicated that endophytes can affect the competitiveness of *C. stoebe*. As both co-introduction and host-jumping of endophytes align with hypotheses of plant invasion that are based on enhanced competitiveness. Kharwar et al. (2008) reported 183 mycoendophytes representing 13 fungal taxa isolated from leaf, stem and root tissues of *C. roseus* from two sites representing two different ecosystems in North India. The leaf tissues showed more diversity of endophytes like *Drechslera, Curvularia, Bipolaris, Alternaria* and *Aspergillus* spp. Wei et al. (2009) studied the colonization frequencies of endophytic *Pestalotiopsis* species diverse with host plants, ages, tissues and sites. Ya-li et al. (2010) reported 49 endophytic fungi which were recovered from *Saussurea involucrata* and identified using morphological and molecular techniques. Among these fungi *Cylindrocarpon* sp. was the dominant species followed by *Phoma* sp. and *Fusarium* species. Li and Shun (2009) reported the recovery of 300 isolates in which 172 isolates were from *Dracaena cambodiana* and 128 from *Aquilaria sinensis*. Proksch et al. (2009) reported bioactive marine natural products isolated from marine sponges and marine derived fungi.

The maximum biological diversity in terrestrial ecosystems is in tropical and temperate rainforests; interestingly, they also have the greatest number of mycoendophytes. These ecosystems cover only 1.44% of the land’s surface, yet they harbour more than 60% of the world’s terrestrial biodiversity (Strobel and Daisy 2003). Hazalin et al. (2009) isolated 300 endophytes from various parts of plants collected from the National Park, Penang in Malaysia. Some of these endophytes demonstrated cytotoxic activity against the marine leukemic P388 cell line and 1.7% against a human chronic myeloid leukemia cell line K562 (Hazalin et al. 2009).

Strobel (2002) reported that fungal endophytes residing within plants could also produce metabolites similar to or with more activity than those of their respective hosts. Therefore, the search for novel compounds should be directed towards plants that are used by indigenous populations for medicinal purposes, or plants growing in extreme environments, or those that are endemic. These are most likely to harbour novel endophytes that may produce unique metabolites (Strobel and Daisy 2003; Zhang et al. 2006; Deshmukh and Verekar 2008). Survey of literature provides an evidence of increasing research on endophytes and their secondary metabolites. Many endophytes produce important secondary metabolites, which play protective role against insect herbivores or are of industrial importance (Hawksworth et al. 1995; Arnold et al. 2003) (Table 1).

Isolation of endophytic fungi from coffee plants (*Coffea arabica* and *C. robusta*) was shown to have antimicrobial activity against various human pathogenic bacteria (Sette et al. 2006). *Coffea arabica* of family Rubiaceae is luxuriantly cultivated in Southern India, Madras, Mysore, Coorg, Travancore and Cochin. *C. arabica* is being used as an Analgesic, cardiotonic, CNS stimulant, nerveine, stimulant and hypnotic. Large differences have been observed amongst the isolates with respect to their ability to produce metabolites having antimicrobial activity (Pelaez et al. 1998). At present, there is an urgent need to search for endophytic metabolite that can be developed as safe, effective antifungal agents that are non-petrochemical, eco-friendly and easily obtained (Liu et al. 2006).

Bacon et al. (1977) demonstrated the correlation between the presence of the mycoendophyte, *Epichloe typhina* isolated from *Festuca arundinacea* (*Tall fescue*) and the toxicity of its host to herbivorous domestic mammals. Further, they observed that several toxins produced by endophytic fungi and conferred host protection against different herbivores. Mycoendophytes were isolated from the toxic locoweeds *Astragalus mollissimus*,
Table 1. Endophytes isolated from different medicinal plants

<table>
<thead>
<tr>
<th>Endophytes</th>
<th>Host</th>
<th>Use of plant in traditional medicinal</th>
<th>Location</th>
<th>Bioactivity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternaria alternata</td>
<td>Vitis vinifera (Grapevine)</td>
<td>Blood circulation, eye problems</td>
<td>Europe</td>
<td>Antifungal</td>
<td>Musetti et al. 2006</td>
</tr>
<tr>
<td>Alternaria sp., Phoma spp.</td>
<td>Opuntia (Cactus species)</td>
<td>Wound healing</td>
<td>America</td>
<td>Antiviral</td>
<td>Suryanarayanan et al. 2005</td>
</tr>
<tr>
<td>Aspergillus flavus, Phoma sp., Penicillium sp.</td>
<td>Calotropis procera (Milkweed, Rubber bush)</td>
<td>Asthma, leprosy, and in chronic eczema</td>
<td>North Africa</td>
<td>Antimicrobial</td>
<td>Khan et al. 2007</td>
</tr>
<tr>
<td>Botryosphaeria rhodina</td>
<td>Bidens pilosa (Spanish needle)</td>
<td>Reduces swelling, headache, Clears heat and toxins</td>
<td>Tropical</td>
<td>Antifungal, cytotoxic and antiproliferative</td>
<td>Randa et al. 2010</td>
</tr>
<tr>
<td>Colletotrichum gloeosporioides</td>
<td>Artemisia annua (Chinese wormwood)</td>
<td>Malaria</td>
<td>China</td>
<td>Antimalarial</td>
<td>Tan and Zou 2001</td>
</tr>
<tr>
<td>Colletotrichum sp., Phyllosticta sp.</td>
<td>Plumeria rubra (Red Frangipani)</td>
<td>Venereal disease rheumatism, diarrhoea, and leprosy</td>
<td>Central America</td>
<td>Antimicrobial</td>
<td>Suryanarayanan and Thennarasan 2004</td>
</tr>
<tr>
<td>Colletotrichum species</td>
<td>Banana, Ginger, (Jamaica ginger)</td>
<td>Blood, cholesterol thinning, in heart disease</td>
<td>South Asia</td>
<td>Antibacterial</td>
<td>Photita et al. 2005</td>
</tr>
<tr>
<td>Curvularia lunata</td>
<td>Azadirachta indica (Neem)</td>
<td>Skin disease diabetic</td>
<td>India</td>
<td>Antifungal</td>
<td>Verma and Kharwar 2006</td>
</tr>
<tr>
<td>Cylindrocarpon sp., Phoma sp., Fusarium sp.</td>
<td>Saussurea involucrata</td>
<td>Rheumatoid arthritis, cough with cold, stomachache</td>
<td>Asia, Europe</td>
<td>Antimicrobial, anti-</td>
<td>Ya-li et al. 2010</td>
</tr>
<tr>
<td>Entrophospora infrequens</td>
<td>Nothapodytes foetida (Stinking tree)</td>
<td>Cancer</td>
<td>India</td>
<td>Antileukaemia and antitumor</td>
<td>Amna et al. 2006</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
<td>Dianthus Caryophyllus (Carnation, Divine flower)</td>
<td>Gastrointestinal system, improve heart health</td>
<td>Mediterranean</td>
<td>Antimicrobial</td>
<td>Postma and Rattink 1991</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
<td>Juniperus recurva. (Himalayan juniper)</td>
<td>For long-continued vomiting</td>
<td>Pakistan</td>
<td>-</td>
<td>Kour et al. 2008</td>
</tr>
<tr>
<td>Fusarium solani</td>
<td>Apodytes dimidiata (White pear)</td>
<td>Intestinal parasites ear inflammation</td>
<td>Southern Africa</td>
<td>Anticancer (topotecan and irinotecan)</td>
<td>Shweta et al. 2010</td>
</tr>
<tr>
<td>Guignardia sp.</td>
<td>Spondias mombin (Java plum)</td>
<td>Eye inflammation, diarrhea, venereal diseases</td>
<td>America</td>
<td>Antiviral, Antibacterial</td>
<td>Rodrigues-Heerklotz et al. 2001</td>
</tr>
<tr>
<td>Muscodor albus</td>
<td>Cinnamomum zeylanicum (Cinnamon)</td>
<td>Oldest herbal medicines</td>
<td>Sri Lankan</td>
<td>Antifungal</td>
<td>Strobel 2006</td>
</tr>
<tr>
<td>Muscodor albus</td>
<td>Guazuma umbilifolia (Bastard cedar)</td>
<td>Weight loss, bleeding, childbirth, cold, cough</td>
<td>America</td>
<td>Antibacterial. Antifungal</td>
<td>Strobel et al. 2007</td>
</tr>
<tr>
<td>Muscodor crispans</td>
<td>Ananas ananassoides (Wild pineapple)</td>
<td>Gastric pain</td>
<td>Bolivia, Brazil</td>
<td>Anti-tuberculosis</td>
<td>Mitchell et al. 2010</td>
</tr>
<tr>
<td>Mycorrhizal fungi</td>
<td>Rhododendron tomentosum (Labrador tea)</td>
<td>Coughs, dyspepsia, dysentery, leprosy, itch</td>
<td>North America</td>
<td>antibacterial and antioxidant</td>
<td>Kajula et al. 2010</td>
</tr>
<tr>
<td>Neotyphodium sp.</td>
<td>Festuca arundinacea (Tall fescue)</td>
<td>-</td>
<td>Europe</td>
<td>-</td>
<td>Sugawara et al. 2004</td>
</tr>
<tr>
<td>Nigrospora sp., Alternaria sp.</td>
<td>Aegle marmelos (Bel, Siriphal)</td>
<td>Wound healer, scurry.</td>
<td>India</td>
<td>Antimicrobial</td>
<td>Gond et al. 2007</td>
</tr>
<tr>
<td>Paeclomyces sp.</td>
<td>Torreya grandi (Chinese nutmeg yew)</td>
<td>Skin infections</td>
<td>China</td>
<td>Antitumor, antifungal, antinfammation</td>
<td>Huang et al. 2001</td>
</tr>
<tr>
<td>Penicillium commune</td>
<td>Hibiscus tilaeus</td>
<td>Fevers, coughs</td>
<td>Southeast Asia</td>
<td>Antimicrobial</td>
<td>Yan et al. 2010</td>
</tr>
<tr>
<td>Penicillium cryosogenum, Aspergillus fumigates</td>
<td>Catharanthus roseus (Sadabahar)</td>
<td>Blood clotting, eyewash, diabetes</td>
<td>India</td>
<td>Anticancer</td>
<td>Kharwar et al. 2008</td>
</tr>
<tr>
<td>Pestalotiopsis microspora</td>
<td>Terminalia morobensis</td>
<td>anti-oomycetic</td>
<td>Papua New Guinea, Mexico</td>
<td>Antifungal, Expectorant, antimicrobial</td>
<td>Harper et al. 2003</td>
</tr>
<tr>
<td>Pestalotiopsis pauciseta</td>
<td>Tabebuia pentaphylla</td>
<td>flu, cold and easing smoker's cough</td>
<td>China</td>
<td>Antispasmodic,</td>
<td>Vennila et al. (2010)</td>
</tr>
<tr>
<td>Phoma capitulum</td>
<td>Justicia gendarussa</td>
<td>Cough, fever</td>
<td>-</td>
<td>-</td>
<td>Gangadevi and</td>
</tr>
</tbody>
</table>
Oxytropis lambertii and Oxytropis sericea. It is native of northern China and Mongolia. Astragalus mollissimus has been used for anaemia and blood disorders, blenorrhrea (profuse mucous discharge from the vagina or urethra), as an ointment for burns and to stimulate the immune system and suppress tumors. Moreover, it is used to treat chronic weakness of the lungs with shortness of breath, collapse of energy, prolapse of internal organs, spontaneous sweating, chronic lesions and deficiency edema. These produce the alkaloid swainsonine that causes locoism, a disease of ruminant animals (Braun et al. 2003). Thus, some endophytic fungi produce novel secondary metabolites of industrial potential (Schulz et al. 2002; Worapong et al. 2002) while others enhance the fitness of their host plants (Redman et al. 2002). The mycoendophyte Taxomyces andreanae, which produces taxol in vitro, was isolated from Taxus sp. (Stierle et al.1993). Venilla et al. (2010) studied the effect of taxol extracted from the endophytic fungus Pestalotiopsis pauciseta recovered from Tabebuia pentaphylla Hems. T. pentaphylla (family Bignoniaceae) is distributed in northern Mexico, Southern Florida and Cuba. The generic name is derived from the words used for the trees by the indigenous peoples of Brazil. It is used against flu, cold and easing smoker's cough. Apparently it acts as expectorant, by promoting the lungs to cough up and free deeply embedded mucus and contaminants.

Zhou et al. (2010) summarized the recent advances in taxol-producing endophytic fungi all over the world. Kajula et al. (2010) studied the extracellular siderophore production as well as production of antibacterial and antioxidant compounds by endophytic fungi of Scots pine (Pinus sylvestris L.) and Labrador tea (Rhododendron tomentosum Harmaja). The pinolenic acid contained in pine nut oil helps curb appetite. It is used as a pain reliever in arthritis, aches, pains and sore muscles. It is important remedy for bladder, kidney, and rheumatic affections, diseases of the mucous membrane and respiratory complaints; externally in the form of liniment plasters and inhalants. Labrador tea is useful in coughs, dyspepsia, and irritation of the membranes of the chest. An infusion of the tea has been used to soothe irritation in infectious, feverish eruptions, in dysentery, leprosy and itch, etc.

Yang et al. (1994) reported that the phenol and phenolic acids, detected in culture medium of endophytes, often have pronounced biological activities. 2-Hydroxy-6-methylbenzoic acid was isolated from endophytic Phoma species which showed remarkable antibacterial activity. Phoma medicaginis exists as a prolonged asymptomatic infection of its host plant (Medicago species). In early Chinese medicines, physicians used young leaves of Medicago species to treat disorders related to the digestive tract and the kidneys. It produces significant levels of the toxin Brefeldin, during and after switching from the endophytic to the saprotrophic phase when the host dies (Weber et al. 2004). Suryanarayanan et al. (2005) studied the cactus Cylindropuntia fulgida for its endophytic diversity. The stem of certain Cacti have been investigated for the treatment of type II diabetes, reductions in nausea, dry mouth, and loss of appetite as well as less risk of a severe hangover.

Karsten et al. (2007) reported herbicidal and algaeccidal activity in ethyl acetate extract of an endophytic Phoma sp. isolated from Fagonia cretica, F. cretica is used against fever, thirst, vomiting, dysentery, asthma, urinary

<table>
<thead>
<tr>
<th>Mycoendophytes in medicinal plants</th>
<th>(Nilinirgundi)</th>
<th>treatment of pains in the head, paralysis</th>
<th>carminative</th>
<th>Muthumary 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phoma eupyrena, Cladosporium cladosporioides</td>
<td>Azadirachta indica (Neem)</td>
<td>Skin disease diabetic, antibacterial, antiviral</td>
<td>India</td>
<td>Antimicrobial</td>
</tr>
<tr>
<td>Phoma medicaginis</td>
<td>Medicago sp.</td>
<td>digestive tract and kidneys</td>
<td>Italy</td>
<td>Antimicrobial</td>
</tr>
<tr>
<td>Phoma sorghina</td>
<td>Tithonia diversifolia (Mexican sunflower)</td>
<td>Sprains, bone fractures, hepatitis</td>
<td>West Africa</td>
<td>Antimicrobial</td>
</tr>
<tr>
<td>Phoma sp.</td>
<td>Fagonia cretica (Dhamsha)</td>
<td>Fever, vomiting, dysentery, typhoid, toothache, stomach troubles, skin diseases</td>
<td>Alicante, Spain</td>
<td>Antifungal, algicidal</td>
</tr>
<tr>
<td>Phoma sp.</td>
<td>Saurania scaberrinae (Guinea plant)</td>
<td>Fever and in holistic health care</td>
<td>Australia</td>
<td>Antibacterial</td>
</tr>
<tr>
<td>Phomopsis</td>
<td>Coffea arabica</td>
<td>Stimulant and hypnotic, Analgesic, cardiotonic</td>
<td>India</td>
<td>Antimicrobial</td>
</tr>
<tr>
<td>Phyllosticta sp., Colletotrichum sp.</td>
<td>Pasania edulis (Japanese oak)</td>
<td>Skin disease</td>
<td>Japan</td>
<td>Antimicrobial</td>
</tr>
<tr>
<td>Phyllosticta sp.</td>
<td>Guazuma tomentosa (Mutamba)</td>
<td>Childbirth, wound healing, diarrhea and dysentery</td>
<td>Tropical America</td>
<td>Antimicrobial</td>
</tr>
<tr>
<td>Pichia guilliermondii</td>
<td>Paris polyphylla (Satuwa)</td>
<td>Poisonous snake bites, boils and ulcers fever, headache</td>
<td>China</td>
<td>Antibacterial activity</td>
</tr>
<tr>
<td>Seimatoantlerium nepalense</td>
<td>Taxis wallichiana (Himalayan yew)</td>
<td>Cardiac remedy</td>
<td>Europe</td>
<td>Anti cancer</td>
</tr>
<tr>
<td>Taxomyces andreanae</td>
<td>Taxis sp. (Yew plant)</td>
<td>Cancer</td>
<td>North America</td>
<td>Anticancer</td>
</tr>
<tr>
<td>Taxomyces andreanae</td>
<td>Taxis brevifolia (Pacific yew)</td>
<td>Cancer</td>
<td>North America</td>
<td>Anticancer, lung cancer</td>
</tr>
</tbody>
</table>
discharges, liver trouble, dropsy, delirium, typhoid, toothache, stomach troubles, and skin diseases. Rand et al. (2010) isolated a mycoendophyte (*Botryosphaeria rhodina*) from the stem of the medicinal plant *Bidens pilosa* (Asteraceae) that showed anti-inflammatory, antiseptic and antifungal effects. *Bidens pilosa* is used as a medicinal plant in many regions of Africa, Asia and tropical America. The extract of *Botryosphaeria rhodina* also had significant cytotoxic and antiproliferative effects against several cancer cell lines.

Borges and Pupo (2006), has reported two novel hexahydronaphthoquinone derivatives, dendraoyl E and F isolated from *Phoma sorghina*, which was found as an endophyte associated with a medicinal plant *Tithonia diversifolia*. The dried leaves of *T. diversifolia* showed anti-inflammatory and analgesic activities. Schwarz et al. (2004) optimized the culture conditions of *Phoma* species and reported highest nematocidal activity in yeast malt glucose medium. Also, the secondary metabolites produced on Czapec yeast autolysate and Yeast extract sucrose media by several *Phoma* species, separated by thin layer chromatography clarified the systematics of the genus (Montel et al. 1991). Phomodione, 2,6-diacetyl-7-hydroxy-4a,9-dimethoxy-8,9b-dimethyl-4a,9b-dihydrodibenzo furan-1,3, an usnic acid derivative, were isolated from culture broth of a *Phoma* species which was an endophyte in the Guinea plant (*Saurauia scaberrinae*). Usnic acid and two of its derivatives, cercosporamide and phomodione, were also isolated from this fungus (Hoffman et al. 1998) Smith et al. (2008) provided direct evidence from bioassays of endophytes isolated from tropical plants and bioinformatic analyses, that gives a novel chemistry of potential value.

Raviraja (2005) studied eighteen species of mycoendophytes, isolated from bark, stem and leaf segments of five medicinal plant species growing within the Kudremukh range in the Western Ghats of India. The most common endophytic fungi were *Curvularia clavata*, *C. lunata*, *C. pallescens* and *Fusarium oxysporum*. The greatest species richness and frequency was found in the leaf segments, rather than the stem and bark segments of the host plant species. Thus, if endophytes could produce the same rare and important bioactive compounds as their host plants, this would not only reduce the need to harvest slow-growing and possibly rare plants but also help to preserve the world’s ever-diminishing biodiversity.

PIRIFORMOSPORA INDICA: A NOVEL GROWTH PROMOTING ENDOPHYTE

In 1998, Varma and colleagues discovered *Piriformospora indica* in the desert soil of Rajasthan and proved that it belongs to Basidiomycotina. The formation of pyriform chlamydospores is an important feature of this fungus. *P. indica* has tremendous capacity to enhance growth of host plant through its root-colonization (Rai et al. 2001). It is similar to arbuscular mycorrhizal fungi in many respects (Rai and Varma 2005; Deshmukh et al. 2006). Inoculation with fungus or with culture filtrates can enhance host plant biomass. *P. indica* acts as multifunctional fungus because of its role as a biofertilizer, bioprotector, growth regulator, or it can increase drought tolerance (Sun et al. 2010). Recently, Yadav et al. (2010) reported that a phosphate transporter gene (PiPT) plays an important role during the transport of phosphate from this fungus to the host plant. Hence, the endophyte, *P. indica* has provided a new insight for understanding the mechanism of phosphate transfer in host plants. There are many advantages of using *P. indica* in agriculture and forestry (Singh et al. 2003; Yadav et al. 2010). *P. indica* can be used as a biological control agent against soil-borne root pathogens. The severity of the disease caused by *Pseudocercosporella herpotrichoides* and *Fusarium culmorum* were reduced when roots of winter wheat were colonized with *P. indica*. Kumar et al. (2009) also studied bioprotection potential of *P. indica* against *Fusarium verticillioides*, a root parasite and showed improvement in biomass, root length and number as compared with controls. Antioxidant enzyme activities were reduced by the presence of *P. indica* which helped the host plant.

Piriformospora indica has also proved to be a valuable tool for biological hardening of micropropagated plantlets. Regenerated plantlets of tobacco subjected to two different biological hardening techniques showed 88-94% survival when inoculated as a root endophyte with *P. indica*, but only 62% survival in uninoculated controls. Thus, *P. indica* enhances plant growth, and survival via a positive impact on the nutritional and water status of the plant. It increases the reproductive potential, improves root performance, and provides natural defense against invaders, including pests and pathogens (Prasad et al. 2008).

ENDOPHYTES: THE NEW AND ECO-FRIENDLY DRUG PRODUCERS

The number of eco-friendly drugs produced by mycoendophytes is large as compared to endophytic bacteria. Natural products from fungal endophytes can be grouped into several categories, including alkaloids, steroids, terpenoids, isocoumarins, quinones, phenylpropanoids and lignans, phenol and phenolic acids, aliphatic metabolites, lactones, etc.

A novel amide, characterized as a ras-farnesytransferase inhibitor was extracted from the culture broth of an endophytic *Phoma* species (Ishii et al. 2000). Mycoendophytes are being increasingly accepted as an ecological group of micro-organisms that may provide sources for new secondary metabolites with useful biological activities. An array of active principle has been isolated and characterized from endophytes and many of these have diverse bioactivities (anti-cancerous, anti-oxidants, anti-fungal, anti-bacterial, anti-viral, anti-insecticidal and immune suppressants). Yang et al. (2006) reported two new 12-membered ring lactones isolated from the mycelial extracts of *Cladosporium tenuissimum*. Additional poliketides 12-membered macrolides have been produced by the endophytic *C. tenuissimum* of *Maytenus hookeri* (Silky bark). Mycoendophyte *Nodulisporium* species
associated with *Juniperus cedrus* (Juniper), produced seven new metabolites. Chaetominine, an alkaloid with a new framework, produced by endophytic *Chaetomium* species was isolated from *Adenophora axilliflora*. The cytotoxic effect shown by the Chaetominine, against the human leukemia K562 and colon cancer SW1116 cell lines was higher than the drug 5-fluouracil (Jiao et al. 2006). Phaeosporamides and two new carbon skeleton derivatives were isolated from the endophytic *Pheosphaeria avenaria*. Phaeosporamide was found to be an inhibitor of the signal transducer and activator of transcription. This plays a vital role in regulating cell growth and survival, constituting a target for anticancer therapy (Maloney et al. 2006). Sumarah et al. (2010) identified the fungal endophytes from *Picea rubens* (red spruce) needles, isolated the active principles, and evaluated their toxicity. *P. rubens* is a species of spruce native to eastern North America. Three strains were toxic to the forest pest *Choristoneura fumiferana* (eastern spruce budworm). Leafy red spruce twigs are boiled for making spruce beer.

ANTICANCER AND ANTI-TUBERCULOSIS COMPOUNDS

Cancer is a group of diseases characterized by unregulated growth and spread of abnormal cells, which can result in death if not controlled (Pimentel et al. 2010). It has been considered as one of the major causes of death worldwide (about 13% of all deaths). Evidences are present about bioactive compounds produced by endophytes and could be an alternative approach for discovery of novel drugs, since many natural products from plants, microorganisms, and marine sources were identified as anticancer agents (Firakova et al. 2007). The anticancer properties of several secondary metabolites from endophytes have been investigated recently. The first anticancer agent produced by endophytes was Taxol and its derivatives. Taxol is a highly functionalized diterpenoid, isolated from yew (*Taxus*) species (Bacon and White 1994). The mode of action of Taxol is to prevent tubulin molecules from depolymerisation during the processes of cell division (Tan and Zou 2001). Camptothecin another potent antineoplastic agent, was firstly isolated from the wood of *Camptotheca acuminata* Decaisne (*Nyssaceae*) in China (Wall et al. 1966). Camptothecin and 10-hydroxy camptothecin are two important precursors for the synthesis of the clinically useful anticancer drugs, topotecan, and irinotecan (Uma et al. 2009). The products were obtained from the endophytic fungi *Fusarium solani* isolated from *Camptotheca acuminata* (Kusari et al. 2009). Ergoflavin, is another dimeric xanthene linked in position 2 compound, belongs to the class ergochromes and is described as a novel anticancer agent isolated from an endophytic fungi growing on the leaves of an Indian medicinal plant *Mimusops elengi* (*Sapotaceae*) (Deshmukh et al. 2009). Another compound Secalonic acid D, a mycotoxin belonging to ergochrome class, is known to have potent anticancer activities, was isolated from the mangrove endophytic fungus demonstrated high cytotoxicity on HL60 and K562 cells by inducing leukemia cell apoptosis (Zhang et al. 2009). More novel 22-oxa cytchalasins (Figure 1.A) (anti-cancer) drugs are also required worldwide to combat this scourge. These compounds have antitumor activity (Bills et al. 1996). Crude Extracts of endophytic fungus *Alternaria alternata*, isolated from *Coffea Arabica* L., showed moderate cytotoxic activity to HeLa cells in vitro, when compared to the dimethyl sulfoxide (DMSO) treated cells (Fernandes et al. 2009). *Tripterygium wilfordii* is used in traditional Chinese medicine for the treatment of fever, chills, edema and carbuncle. There is a need to search for new antimicrobial agents because infectious diseases are still a global problem due to the development and spread of drug-resistant pathogens.

Rukachaisirikul et al. (2007) reported endophytic *Phomopsis* species which produces secondary metabolites like phomoenamide, phomonitroester and Deacetyl phomoxanthone, and showed antibacterial activity against *Mycobacterium tuberculosis*. Gordien et al. (2010) studied extracts from Scottish plants, lichens and mycoendophyte which were screened for activity against *Mycobacterium aurum* and *M. tuberculosis*. The greatest activity against *M. aurum* was shown by extracts of *Juniperus communis* roots, of the lichen *Cladonia arbuscula* and of a mycoendophyte isolated from *Vaccinium myrtillus* (Gordien et al. 2010). It is obvious that mycoendophytes serve as a source of potentially useful medicinal compounds. For example, 3-Nitropropionic acid was isolated from *Phomopsis* species which inhibited *Mycobacterium tuberculosis* and harbors anti-tuberculosis activity (Copp and Pearce 2007).

Alkaloids: These are useful anticancer agents that are often found in endophytic fungi. Wagenaar et al. (2000) isolated three novel cytchalasins from endophytic *Rhinochladiella* species which demonstrated antitumor activity. Most of the alkaloids have been detected in the cultures of grass-associated mycoendophyte, such as sexual *Epichloe* spp. and asexual *Neotyphodium* species. Although metabolite production can be influenced by environmental factors, it seems to depend mostly on the strain or genotype of the endophytic species and less on the host grass genotype (Siegel et al. 1990). The alkaloids from mycoendophyte includes amines and amides, indole derivatives, pyrrolizidines and quinazolines (Figure 1 B). Amines and amides are common substances produced by mycoendophyte from tall fescue, perennial ryegrass and many temperate grasses (Wilkinson et al. 2000). The ergot alkaloids are the second group of amine and amide alkaloids discovered in cultures of *Neotyphodium* endophytes, all are being characterized previously from ergot sclerotia (Tan and Zou 2001). These metabolites were later demonstrated to be neurotoxic to insects and mammal herbivores. Ergovaline and other structurally related ergopeptides are likely responsible for the toxicosis of livestock that consume endophyte-infected tall fescue. The biosynthesis of ergot alkaloids such as ergovaline is better understood in the ergot fungus *Claviceps purpurea*.

Steroids and terpenoids: Steroids have many important physiological effects, and some are found in
mycoendophyte. A novel ergosterol derivative, 4a-homo-22-hydroxy-4-oxaergasta-7, was isolated from a strain of Glloecladium sp., an endophyte on Taxus chinensis (Chinese yew). In addition to four cytochalasins, eleven novel sesquiterpenoids were isolated from cultures of the mitosporic fungus Geniculosporium species an endophyte associated with the red alga Polysiphonia species (Krohn et al. 2005).

Quinones, phenylpropanoids and lignans: Highly functionalised cyclohexenone epoxides, jesterone and hydroxyjesterone, were characterized from a newly identified endophyte Pestalotiopsis jesteri present in Fragrarea bodenii. Guignardic acid is the first member of a novel class of natural products which were detected in the culture broth of Guignardia species obtained from Spondias mombin (Golden apple) (Rodrigues et al. 2001), which is a member of family Anacardiaceae native to the tropical America, including the West Indies. In past, it had been used as a febrifuge, diuretic, for leprosy, severe cough causing relief through vomiting.

Phenols, phenolic acids and antioxidants: Phenols and phenolic acids from fungal endophytes usually have pronounced biological and antioxidant activities. Pestacin and isopestacin are two novel dihydroisobenzofuran-containing phenols possessing antifungal and antioxidant activities (Figure 1 C and D). These were extracted from endophytic Pestalotiopsis microspora isolated from Terminalia morobensis (Harper et al. 2003). Both pestacin and isopestacin showed antimicrobial and antioxidant activity confirmed by electron spin resonance spectroscopy measurements. They are able to scavenge superoxide and hydroxyl free radicals in solution (Lewis et al. 1997).

Aliphatic compounds and lactones: Chaetomelic acid, a potent and highly specific inhibitor of farnesyl-protein transferase was characterised from the endophyte Chaetomella acutisea. Seven lactones were also characterized from an unidentified ascomycete endophyte isolated from Cistus salviifolius (White Rockrose) in Chile (Kopcke et al. 2002).

ANTIOXIDANT COMPOUNDS

Antioxidant activity of a compound is actually the effectiveness of the compound against damage caused by reactive oxygen species (ROSs) and oxygen-derived free radicals, which contribute to a variety of physiological and pathological effects, for instance, DNA damages, carcinogenesis, and cellular degeneration (Haung et al. 2007; Seifried et al. 2007). Antioxidants are considered promising therapy for prevention and treatment of ROS-linked diseases as cancer, cardiovascular disease, atherosclerosis, hypertension, ischemia/reperfusion injury, diabetes mellitus, neurodegenerative diseases like Alzheimer and Parkinson diseases, rheumatoid arthritis, and ageing (Valko et al. 2007).

Naturally occurring antioxidant compounds are commonly found in vegetables, fruits and medicinal plants. However, it has been observed that endophytes are also a potential source of novel natural antioxidants. Endophytic Xylaria sp. isolated from the medicinal plant Ginkgo biloba, contain compounds showing antioxidant activities (Lui et al. 2007). Pestacin and isopestacin (1,3-dihydroisobenzofurans), were obtained from the endophytic fungus Pestalotiopsis microspora isolated from Terminalia morobensis a plant growing in the Papua New Guinea (Strobel et al. 2002; Harper et al. 2003). These compounds mainly isopestacin possess antioxidant activity by scavenging both superoxide and hydroxyl free radicals in solution, added to the fact that isopestacin is structurally similar to the flavonoids (Strobel et al. 2002). Graphis lactone A, a phenolic compound isolated from the endophytic fungus Cephalosporium sp. residing in Trachelospermum Jasminoides, demonstrated to have free radical-scavenging and antioxidant activities in vitro stronger than the standards, butylated hydroxytoluene (BHT) and ascorbic acid, coassayed in the study (Song et al. 2005).

ANTIBIOTICS, ANTIFUNGAL AND ANTIVIRAL COMPOUNDS

Antibiotics are defined as low-molecular-weight organic natural products made by microorganisms that are active at low concentration against other microorganisms (Moon et al. 2002). Antibiotics from endophytic microbes have been reported to inhibit a variety of pathogens. For example, Cryptocandin is a unique antymycotic peptide isolated from Cryptosporiopsis quercina (Mohlai et al. 2005) (Figure 1 E, F, and G). Similarly, Pestalotiopsis microspora, isolated from Torreya taxifolia produces several antifungal compounds. These include pestaloside, an aromatic glucoside, and two pyrones: pestalopyrone and hydroxyxpy-stalopyrone. T. taxifolia, is a rare and endangered species found in the Southeastern United States. It is used for the treatment of cancer. Other novel sesquiterpenes produced by endophytic fungi are 2-hydroxydimeninol and a highly functionalized humulane (Surette et al. 2003).

Endophytic Muscodor albus was isolated from small limbs of Cinnamonum zeylanicum (Strobel 2006). This xylariaceous (non-spore producing) fungus inhibits and kills certain other fungi and bacteria by producing a mixture of volatile compounds. Two novel human cytomegalovirus protease inhibitors, cytic acid, have been isolated from the endophytic Cytonaema sp. (Schmid et al. 1993). Guo et al. (2008) studied the new antimicrobial metabolites isolated and extracted from the culture of Colletotrichum species from Artemisia annua, which is a traditional Chinese herb. It is well recognized for its synthesis of artemisinin (an antimalarial drug). These metabolites demonstrated activity against fungi and bacteria.

Endophytic fungi of the genera Xylaria, Phoma, Hypoxylon, and Chalara are producers of a group of substances known as the cytochalasins, of which over 20 are known. Many of these compounds possess antibiotic activities, but because of their cellular toxicity they have not been developed into pharmaceutical drugs. Three novel cytochalasins have recently been reported from a Rhinocladeliella sp. as an endophyte on Tripterygium wilfordii.
Figure 1. Structure of compounds produced by endophytes (A) Cytochalasins antitumor compound from an endophyte *Rhinocladiella* sp., (B) Pyrrolizidines, (C) Isopestacin (D) Pestacin an antioxidant produced by an endophytic *Pestalotiopsis microspora* strain recovered from *Terminalia morobensis* (E) Ooeydin (F) Periconicin, (G) Cryptocandin
FUTURE PERSPECTIVES AND CONCLUSIONS

The need for new bioactive to overcome the growing problems of drug resistance in microorganisms and the appearance of new diseases is of increasing importance. The capability of fungi to produce bioactive metabolites has encouraged researchers to isolate and screen fungi from diverse habitats and environments to search for novel bioactive metabolites.

Some endophytes produce phytochemical that were originally thought of as characteristic of the host plant. It appears that genetic interaction between the endophyte and the host has occurred over evolutionary time (Tan and Zou 2001). This concept was proposed to explain why Taxomyces andreanae produce taxol. The cultured endophytes, can be induced to produce the same rare and important bioactive compounds as when associated with their host plants, it would reduce the need to harvest slow-growing and possibly rare plants. It would also help to preserve the world’s ever-diminishing biodiversity. Furthermore, a microbial source of a high-value product is an economical way to produce a metabolite in a bulk quantity and thereby reduce its market price.

Researchers are searching for new antibiotics, chemotherapeutic agents, and agrochemicals that are highly effective, possess low toxicity, and have a minor environmental impact. This search is driven by the development of resistant infectious microorganisms e.g., species of Mycobacterium, Streptococcus and Staphylococcus. Furthermore, new diseases, like AIDS and respiratory syndrome, need the invention and development of novel active drugs to fight them. Diseases such as AIDS require drugs that target them specifically and also new therapies for treating the ancillary infections which are the consequence of a weakened immune system. New drugs are needed for immunocompromised cancer patients and those receiving organ transplants and those who are at risk of opportunistic pathogens, such as Aspergillus spp., Cryptococcus spp. and Candida spp. Finally, a number of synthetic agricultural products have been removed from the market due to safety and environmental problems so there is also a need to discover an alternative to control crop pests and pathogens.

To overcome the infectious disease, there is need for a variety of novel antimicrobial compounds of biological origin. The mycoendophytes hold enormous potential as sources of antimicrobials. These endophytes may open new sources of antimicrobials. These endophytes may open new opportunities for research on endophytes.

ACKNOWLEDGEMENTS

We are thankful to Ministry of Environment and Forest, Government of India, New Delhi for providing financial assistance for research on endophytes.

REFERENCES

